Skip to main content Skip to main navigation menu Skip to site footer

Hypothyroid on cardiopulmonary bypass usage in children with congenital heart disease: A literature review

  • Agil Al Jufri ,
  • Heroe Soebroto ,
  • I Ketut Alit Utamayasa ,


Congenital heart disease (CHD) is a birth defect that affects the structure or function of the heart. Cardiopulmonary bypass (CPB) is frequently used to treat CHD, which raises the risk of hypothyroidism. The disorder can cause circulatory problems, edema, and pleural effusion, all of which indicate heart failure. Hypothyroid conditions can cause decreased cardiac output due to poor relaxation of cardiac smooth muscle cells and reduced endothelial nitric oxide accessibility. This causes a chain reaction of increasing arterial stiffness, which raises systemic vascular resistance (SVR). Thyroid hormones also have an effect on the renin-angiotensin-aldosterone pathway, promoting the synthesis of renin substrates in the liver. This causes higher diastolic blood pressure, narrow pulse pressure, and decrease in renin levels in hypothyroid patients. Thyroid hormones also regulate the transcription of pacemaker genes, hence hypothyroid patients have a slower heartbeat. Hypothyroidism raises the likelihood of atrial fibrillation.


  1. Yu D, Zou L, Cun Y, Li Y, Wang Q, Shu Y, et al. Preoperative thyroid hormone levels predict ICU mortality after cardiopulmonary bypass in congenital heart disease patients younger than 3 months old. BMC pediatrics. 2021;21(1):50. doi:
  2. Haas NA, Camphausen CK, Kececioglu D. Clinical review: thyroid hormone replacement in children after cardiac surgery--is it worth a try? Critical care (London, England). 2006;10(3):213. doi:
  3. Talwar S, Kumar MV, Choudhary SK, Airan B. Thyroid hormone supplementation following open-heart surgery in children. Indian Journal of Thoracic and Cardiovascular Surgery. 2016;32(1):17-22. doi:
  4. Bojar RM. Cardiopulmonary Bypass. Manual of Perioperative Care in Adult Cardiac Surgery. 2021. p. 283-321.
  5. Nistal-Nuño B. Euthyroid sick syndrome in pediatric and adult patients requiring extracorporeal circulatory support and the role of thyroid hormone supplementation: a review. Perfusion. 2021;36(1):21-33. doi:
  6. Souza TFD, Hoshal SG, Albeiruti R, Zambito MP, Zambito GM, Khan FM, et al. Transient Secondary Hypothyroidism and Thyroid Hormone Replacement Therapy in Pediatric Postoperative Cardiopulmonary Bypass. Current cardiology reviews. 2018;14(2):121-7. doi:
  7. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed). 2021;372:n71. doi:
  8. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomized or non-randomized studies of healthcare interventions, or both. BMJ (Clinical research ed). 2017;358:j4008. doi:
  9. Upadhyay J, M T, A R. Pathophysiology, etiology, and recent advancement in the treatment of congenital heart disease. Journal of Indian College of Cardiology 92: 67. 2019;2:67.
  10. Alsaid SF, Hidayat T, Soebroto H. Quality of Life in Children with Acyanotic Congenital Heart Disease in Dr. Soetomo General Hospital, Surabaya, Indonesia. Cardiovascular and Cardiometabolic Journal (CCJ). 2022;3(1):1-8. doi:
  11. Sun R, Liu M, Lu L, Zheng Y, Zhang P. Congenital Heart Disease: Causes, Diagnosis, Symptoms, and Treatments. Cell biochemistry and biophysics. 2015;72(3):857-60. doi:
  12. Kannan BR. Clinical Diagnostic Approach to Congenital Acyanotic Congenital Heart Disease in Infants and Children. Indian journal of pediatrics. 2020;87(5):381-4. doi:
  13. Thiene G, Frescura C. Anatomical and pathophysiological classification of congenital heart disease. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology. 2010;19(5):259-74. doi:
  14. Upadhyay J, Tiwari N, Rana M, Rana A, Durgapal S, Bisht SS. Pathophysiology, Etiology, and Recent Advancement in the Treatment of Congenital Heart Disease. Journal of Indian College of Cardiology. 2019;9(2):67-77. doi:
  15. Park M. Park's Pediatric for Cardiology for Practioners. Philadelphia: ELSEVIER; 2014.
  16. Maghfirah I, Romdoni R. Doubly Committed Subarterial Ventricular Septal Defect Coexisted with Ruptured Aneurysm of The Right Sinus Valsava. Cardiovascular and Cardiometabolic Journal (CCJ). 2022;3(1):40-5. doi:
  17. Sarkar M, Prabhu V. Basics of cardiopulmonary bypass. Indian Journal of anaesthesia. 2017;61(9):760-7. doi:
  18. Kiziltug H, Martinez G. Cardiopulmonary bypass. Anaesthesia & Intensive Care Medicine. 2018;19(7):353-60. doi:
  19. Barry AE, Chaney MA, London MJ. Anesthetic management during cardiopulmonary bypass: a systematic review. Anesthesia and analgesia. 2015;120(4):749-69. doi:
  20. Durandy Y. Minimizing systemic inflammation during cardiopulmonary bypass in the pediatric population. Artificial organs. 2014;38(1):11-8. doi:
  21. Zwifelhofer NMJ, Bercovitz RS, Cole R, Yan K, Simpson PM, Moroi A, et al. Platelet Function Changes during Neonatal Cardiopulmonary Bypass Surgery: Mechanistic Basis and Lack of Correlation with Excessive Bleeding. Thrombosis and haemostasis. 2020;120(1):94-106. doi:
  22. Bronicki RA, Hall M. Cardiopulmonary Bypass-Induced Inflammatory Response: Pathophysiology and Treatment. Pediatric critical care medicine: a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies. 2016;17(8 Suppl 1):S272-8. doi:
  23. Rong LQ, Di Franco A, Gaudino M. Acute respiratory distress syndrome after cardiac surgery. Journal of thoracic disease. 2016;8(10):E1177-e86. doi: 10.21037/jtd.2016.10.74.
  24. Muhammad R, Dharmadjati BB, Mulia EPB, Rachmi DA. Vasoplegia: Mechanism and Management Following Cardiopulmonary Bypass. The Eurasian Journal of Medicine. 2022;54(1):92-9. doi:
  25. Malatinský J, Vigas M, Jezová D, Jurcovicová J, Sámel M, Vrsanský D. The effects of open heart surgery on growth hormone, cortisol and insulin levels in man. Hormone levels during open heart surgery. Resuscitation. 1984;11(1-2):57-68. doi:
  26. Hall RI, Smith MS, Rocker G. The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations. Anesthesia and analgesia. 1997;85(4):766-82. doi:
  27. Bettendorf M, Schmidt KG, Tiefenbacher U, Grulich-Henn J, Heinrich UE, Schönberg DK. Transient secondary hypothyroidism in children after cardiac surgery. Pediatric research. 1997;41(3):375-9. doi:
  28. Komatsu R, Karimi N, Zimmerman NM, Sessler DI, Bashour CA, Soltesz EG, et al. Biochemically diagnosed hypothyroidism and postoperative complications after cardiac surgery: a retrospective cohort analysis. Journal of anesthesia. 2018;32(5):663-72. doi:
  29. Talwar S, Khadgawat R, Sandeep JA, Sreenivas V, Choudhary SK, Gupta N, et al. Cardiopulmonary bypass and serum thyroid hormone profile in pediatric patients with congenital heart disease. Congenital heart disease. 2012;7(5):433-40. doi: 10.1111/j.1747-0803.2012.00667.x.
  30. Holland FW, 2nd, Brown PS, Jr., Weintraub BD, Clark RE. Cardiopulmonary bypass and thyroid function: a "euthyroid sick syndrome". The Annals of thoracic surgery. 1991;52(1):46-50. doi:
  31. Keçeligil HT, Kolbakir F, Adam B, Arikan A, Erk MK. Thyroid hormone alterations during and after cardiopulmonary bypass. Cardiovascular surgery (London, England). 1996;4(5):617-22. doi:
  32. Plumpton K, Haas NA. Identifying infants at risk of marked thyroid suppression post-cardiopulmonary bypass. Intensive care medicine. 2005;31(4):581-7. doi:
  33. Kong SH, Yoon JW, Kim SY, Oh TJ, Park KH, Choh JH, et al. Subclinical Hypothyroidism and Coronary Revascularization After Coronary Artery Bypass Grafting. The American journal of cardiology. 2018;122(11):1862-70. doi:
  34. Karri S, Mandal B, Kumar B, Puri G, Thingnam S, Kumar H, et al. Effect of perioperative use of oral triidothyronine for infants undergoing complex congenital cardiac surgeries under cardiopulmonary bypass: A double-blinded randomized controlled study. Annals of cardiac anaesthesia. 2022;25(3):270-8. doi:
  35. Flores S, Loomba RS, Checchia PA, Graham EM, Bronicki RA. Thyroid hormone (triiodothyronine) therapy in children after congenital heart surgery: A meta-analysis. Seminars in thoracic and cardiovascular surgery. 2020;32(1):87-95. doi:
  36. Lerner RK, Gruber N, Pollak U. Congenital heart disease and thyroid dysfunction: Combination, association, and implication. World journal for pediatric & congenital heart surgery. 2019;10(5):604-15. doi:
  37. Aulia D, Ardiany D. The role of amiodarone in postoperative hypothyroidism patient with factitious thyrotoxicosis and atrial fibrillation: A case report. International journal of surgery case reports. 2023;106:108252. doi:

How to Cite

Jufri, A. A., Soebroto, H., & Utamayasa, I. K. A. (2023). Hypothyroid on cardiopulmonary bypass usage in children with congenital heart disease: A literature review. Bali Medical Journal, 13(1), 291–297.




Search Panel

Agil Al Jufri
Google Scholar
BMJ Journal

Heroe Soebroto
Google Scholar
BMJ Journal

I Ketut Alit Utamayasa
Google Scholar
BMJ Journal